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We are given a linear second-order differential equation, whose operator is denoted by 
L. Then 

Lu (x) = p (x) dzu (x) 
dx z 

with the boundary conditions 

du (0) 
u (0) = Uo, 

dx 

du (x) 
- -  + q (x) - a x  + r (x) u (x) = f (x) (I) 

d.(1) 
- -  - -  U~o; u ( 1 )  --- u~, - -  u ~ ,  ( 2 )  

dx 

where x 6 ~ = [0, i], p(x) is a function that can be continuously differentiated twice, 

while p(x) re0 for all x ~ g; q(x) is a continuously differentiable function and r(x) is a 
continuous function. We assume that the function u(x) is measured at certain points x.~ 

i 

(i = i, I) in the presence of additive stationary noise ~(xi) with zero mean and finite 

variance a 2 , Then 

u (xi) = u* (xi) + ~ (xi), (3) 

where u*(x) is the exact volume of u(x). For simplicity, we assume that the measurements 

are made on a uniform net with step h=x~--xi-1 (i=2, f), and the boundary conditions are 
known exactly. 

The problem is to determine the function f(x) from the measured values u.l = u(xi)" this 

is an irregular inverse problem and involves solving a Fredholm operator equation of the 
first kind [i]: 

l 

Af= ,f G(x, ~)f(~)a~= u(x), ( 4 )  
0 

where G(x, $) is the Green's function of (i) with the boundary conditions O(0, ~)=O(1, ~)=0, 

~@ [0, l] . Problems of this type belong to the class of inverse problems in thermal conduc- 

tion, where it is necessary to determine the steady-state source or sink distribution by 
reference to measured temperature profiles. 

To determine f(x) we find the quantities f~ f~(x) and f2(x), which are determined 
from the measured values and are estimators for u(x), du/dx and d2u/dx 2 correspondingly. 

We define an extended uniform net with step H, A~: x_~ ~x_1~x0~0~ ... ~xh~ �9 �9 

x K <XK+I<XK+ 2. We delete from A2H the nodes x_2 and XK+2, which gives us the net A~, 

i o OnA 2 we define while from AH we selete the nodes x_ I and XK+1, which gives us the net AH" H 

I we define 2 (k = --i, K), and on A H a system of normalized basic splines (B splines) B k B k 

o (k = i--~-~) [2]. The functions f~(x) f1(x) f~ are (k = 0, K) and on ~ we define B k , , 

defined in the spaces of B splines of the second, first, and zeroth orders: 
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K dnu 
F(x) ~ ~ ~ = [hBh (X) ,~, dx n 

h =  1 - -n  

n = O ,  1, 2. (5) 

We solve these auxiliary problems by using Ritz or Bubnov-Galerkin variational methods 
[3]. For this purpose, the right and left sides of the expansion are multiplied scalarly 
by a system of functions B~(x) (n = 0; i; 2), while the right sides are integrated n times 

by parts (integration by parts is not performed for n = 0). We get three systems of linear 
equations: 

I ' .f ~ - - u  ~, n = O ,  1, 2, (6) 
where 

I 

~ = { ~ . 3  = B~ (x) Bt (x)dx = { f ~ } ,  

0 
1 

.o  = { (x) B o 
0 

u '= {u~}={  u(x) d x  
0 

u== {u~} = { i  u(x) d~B~(x) dx + u=,B]~(1)--u=oB2(O) 
dx 

0 

m 1A 1 _ _  

dB~(1) aBe(O)/ 
d~ + . o  d---T-I' 

and u(x) in the interpolant of ui, i = i, I, k, I = i', K. 

The errors between fn(x) and fn*(x) are estimated from the continuous norm 

e'z= I[fn(x)--f~* (x)ll = m a x  I f ~ ( x ) - - f ~ *  (x)l,  n = O, 2. 
x ~  , 

(7) 

The triangle theorem indicates that the error of (7) consists of the sum of the error in 

solving (6) cns and the interpolation error (expansion of (5)) c~ (n = 0, i, 2); without 

proof we give the bounds for these errors: 

2~ ,/2 
S~0 r=O 

~z< 3Ho~ (p*)§ 2~IIFT'[I Vh-7~ [ ~' 2 (- l]S-~-rrs pr ]I/'2 
s = O  r = O  

(8) 

The norms of the symmetrical matrices ][PTI[[, l]rTl[] conform with the norm of (7) and can be 

estimated while solving (6). The quantity m(fn) is the continuity modulus for the function 

fn(x) over an interval of length ~ [2]. We use (8) and (i) to write 

= Ill (x) - -  f* (x)[I ~ lip (x)ll ~z + IIq (x)fl ~' + lit (x)ll ~o. (9) 

With given h, o, and ~(fn*) (n = 0, i, 2) the step H may be found by minimizing the 
estimator m(H) with respect to the desired quantity. Therefore, the step H conforming to 
the errors of the initial data can be determined from 

O~ (H)/OH = O, (10) 
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which is a necessary and sufficient condition for a minimum in the upper value of the bound 
~(H) in view of the strict convexity with respect to H. 

The regularization parameter in this algorithm is the step H for a given h. This defines 
the dimensions of the interpolation subspaces for the interpolation of fn(x) (n = 0, i, 2); 
the regularization itself is performed by choosing suitable interpolation subspaces with 

bases B~(x), B~(x), B~(x) and the dimensions of these. Therefore, the method is best called 

B-sp!ine reguiarization. 

The solution in that case is obtained as a piecewise-smooth one with discontinuities of 
the first kind, which define a piecewise-constant function f~ that approximates to ~(x). 
To improve the smoothness of the solution, perhaps while even gaining accuracy, we can use a 
smoothing polynomial or spline of higher order as f~ without particular attention to the 
degree of accuracy of the smoothing. 

The method has been tested for the case where p(x) = i, q(x) = 0, r(x) = 0 in (i), i.e., 
to define the second derivative of the measured function. It was assumed that ~ = 0.i, i.e., 
the initial data were corrupted by noise to 10% of the mean exact value. To determine H, 
(i0) was solved by Newton's iteration method. The continuity moduli ~(fo~), ~(f1*), ~(f2*) 
were specified. With a given h, the initial approximation H ~ was chosen from the condition 
H/h~5. The step H was determined by solving the equation 

n n 

S~0 r ~ O  

1/2 
Wh/It  7 = 3o)(f2"). (11 )  

The numerical simulation was performed for a monotonically increasing polynomial of 
third degree and a sinusoidal function. The length of the interval ~ was equal to the period 
of the sine wave. The variation in the polynomial within the interval ~ was large, ~i0,000, 
while that of the sinusoidal function was of the order of one. Practical calculations showed 
that it is laborious to solve this problem with smoothing cubic splines for functions with 
large variations. It is also difficult to select weighting factors to construct the smoothing 
curve that will provide a good smoothing over the entire range. Usually, these are selected 
by means of a numerical experiment, i.e., one selects heuristically a curve providing good 
smoothing. Then the resulting spline is differentiated twice. The method described here is 
free from this deficiency. 

The errors in the second derivatives indicated by the continuous norm did not exceed 18% 
with 10% errors in the initial data, 5% errors in the boundary conditions, and numbers of 
points from 20 to 30. 

NOTATION 

L, differential operator; u(x), f(x), measured and unknown functions; p(x), q(x), r(x), 
coefficients in the differential equation; ~, region of function determination; BE(x), k-th 

basic spline of order n; gs' error in solution of the linear equation system; EI, interpola- 

tion error; ~H(f), modulus of the discontinuity of f(x) in the interval of length H; h, 

measuring interval step; d, standard deviation of measurement error. 
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